Xenomorph
  • Solutions
  • Technology
  • Customers
  • Resources
  • News
  • About Us
  • Request a Demo
  • Search
  • Menu Menu
  • Twitter
  • LinkedIn

News

CVA – a business driver for breaking down asset silos

Xenomorph’s analytics partner Numerix sponsored a PRMIA event at New York’s Harvard Club this week on Credit Valuation Adjustment (CVA). The event also involved Microsoft, with a surprisingly relevant contribution to the evening on CVA and “Big Data” (I still don’t feel comfortable losing the quotes yet, maybe soon…). Credit Valuation Adjustment seems to be the hot topic in risk management and pricing at the moment, with Numerix’s competitor Quantifi having held another PRMIA event on CVA only a few months back.

The event started with an introduction to CVA from Aletta Ely of JP Morgan Chase. Aletta started by defining CVA as the market value of counterparty credit risk. I am new to CVA as a topic, and my own experience on any kind of adjustment in valuation for instrument was back at JP Morgan in the mid-90s (those of you under 30 are allowed to start yawning at this point…). We used to maintain separate risk-free curves (what are they now?) and counterparty spread curves, which would be combined to discount the cashflows in the model.

Whilst such an adjustment could be calibrated to come up with an adjusted valuation which would be better than having no counterparty risk modelled at all, it seems one of the key aspects of how CVA differs is that a credit valuation adjustement needs to be done in the context of the whole portfolio of exposures to the counterparty, and not in isolation instrument by instrument. The fact that a trader in equity derivatives was long exposure to a counterparty cannot be looked at in isolation from a short exposure to a portfolio of swaps with the same counterparty on the fixed income desk.

Put another way, CVA only has context if we stand to lose money if our counterparty defaults, and so an aggregated approach is needed to calculate the size of the positive exposures to the counterparty over the lifetime of the portfolio. Also, given this one sided payoff aspect of the CVA calculation, then instrument types such as vanilla interest rate swaps suddenly move from being relatively simple instrument that can be priced off a single curve to instruments that needed optionality to be modelled for the purposes of CVA.

So why has CVA become such a hot topic at the banks? Prior to the 2008/2009 crisis CVA was already around (credit risk has existed for a long time I guess, regardless of whether you regulate or report to it), but given that bank credit spreads were at that time consistently low and stable then CVA had minimal effects on valuations and P&L. Obviously with the advent of Lehmans then this changed, and CVA has been pushed into prominence since it has directly affected P&L in a significant manner for many institutions (for example see these FT articles on Citi and JPMorgan)

A key and I think positive point for the whole industry is the CVA requires a completely multi-asset view, and given regulatory focus on CVA and capital adequacy then as a result it will drive banks away from a siloed approach to data and valuation management. If capital is scarcer and more costly, then banks will invest in understanding both their aggregate CVA and the incremental contribution to CVA of a new trade in the context of all exposures to the counterparty. Looking at incremental CVA, then you can also see that this also drives investment into real or near-realtime CVA calculation, which brings me on to the next talks of the evening by Numerix on CVA calculation methods and a surprisingly good presentation on CVA and “Big Data” from David Cox of Microsoft.

Denny Yu of Numerix did a good job of explaining some of the methods of calculating CVA, and in addition to being cross asset and all the implications that requires for having the ability to price anything, CVA is both data and computationally expensive. It requires both simulation of the scenarios for the default of counterparties through time, but also the valuation of cross-asset portfolios at different points in time. Denny mentioned techniques such as American Monte-Carlo to reduce the computation needed through using the same simulation paths for both default scenarios and valuation.

So on to Microsoft. I have seen some appalling presentations on “Big Data” recently, mainly from the larger software and hardware companies try to jump on the marketing band wagon (main marketing premise: the data problems you have are “Big”…enough said I hope). Surprisingly, David Cox of Microsoft gave a very good presentation around the computation challenges of CVA, and how technologies such as Hadoop take the computational power closer to the data that needs acting on, bringing the analytics and data together. (As an aside, his presentation was notably “Metro” GUI in style, something that seems to work well for PowerPoint where the slide is very visual and it puts more emphasis on the speak to overlay the information). David was obviously keen to talk up some of the cloud technology that Microsoft is currently pushing, but he knew the CVA business topic well and did a good job of telling a good story around CVA, “Big Data” and Cloud technologies. Fundamentally, his pitch was for banks and other institutions to become “Analytic Enterprises” with a common, scaleable and flexible infrastructure for data management and analysis.

In summary it was a great event – the Harvard Club is always worth a visit (bars and grandiose portraits as expected but also barber shop in the basement and squash courts in the loft!), the wine afterwards was tolerably good and the speakers were informative without over-selling their products or company. Quick thank you to Henry Hu of IBM for transportation on the night, and thanks also to Henry for sending through this link to a great introductory paper on CVA and credit risk from King’s College London. Whilst the title of the King’s paper is a bit long and scary, it takes the form of dialogue between a new employee and a CVA expert, and as such is very readable with lots of background links.

Share this entry
  • Share on Twitter
  • Share on LinkedIn
  • Share by Mail
https://www.xenomorph.com/wp-content/uploads/2019/07/logo-xeno.png 0 0 Brian Sentance https://www.xenomorph.com/wp-content/uploads/2019/07/logo-xeno.png Brian Sentance2012-04-13 14:56:512020-02-07 13:32:05CVA – a business driver for breaking down asset silos

Categories

  • Blog Post
  • Events
  • Press Release

Archives

About Xenomorph

Xenomorph provides trusted data management solutions to many of the world’s leading financial institutions.

With more than two decades’ experience managing large volumes of complex data and analytics we can quickly configure a solution for your requirements.

Xenomorph London

4th Floor
10 Lloyd’s Avenue
London EC3N 3AJ
UK

+44 (0)20 7614 8600

info@xenomorph.com

map

Xenomorph New York

45 Rockefeller Plaza, FL 20
New York
NY 10111
USA

+1-212-401-7894

info@xenomorph.com

map


Xenomorph Boston

53 State Street
Suite 500
Boston, MA 02109
USA

+1-617-465-2050

info@xenomorph.com

map

© Xenomorph Software Ltd 2022 - Privacy policy | Anti-Bribery Policy
Scroll to top
This website uses cookies to improve your experience. If you continue to use the site we will assume your consent. ACCEPTRead More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
SAVE & ACCEPT